
Improving node-level performance in
Gadget: data structure and data locality

Luigi Iapichino

Leibniz-Rechenzentrum (LRZ), Garching b. München, Germany

Collaborators: V. Karakasis, N. Hammer, A. Karmakar (LRZ)

in the framework of the Intel® Parallel Computing Center in Garching (LRZ – TUM)

Partners: M. Petkova, K. Dolag (USM München, Germany)

Optimisation strategy

 Gadget3: publicly available, cosmological TreePM N-body + SPH code. Good scaling performance up
to 130,000 Sandy Bridge cores (SuperMUC, Extreme Scaling workshop 2013 @ LRZ).

 However: performance optimization at node level and the use of accelerators had gone largely
unexplored before our work.

 Initial analysis: most of the code components consist of two sub-phases of nearly equal execution
time (40 to 45% for each of them).

▪ The most suitable for the optimization and execution on Intel® Xeon Phi™ (higher floating-point
rate, sustainable cache and memory b/w requirements, but data cache misses) will be the target of
our work.

▪ Isolation of a typical kernel (subfind_density):

➢ Run as a stand-alone separate kernel (same input as original: sandbox model!).

➢ Avoid the overhead of the whole simulation → Quick prototyping, allows native mode on the Xeon Phi™.

➢ Later: port optimizations back to the original code.

15.07.2015 Leibniz Supercomputing Centre 2

Code status before our work

 Current data organisation: Array of Structures (AoS), 224 bytes per
particle.

 Motivation: highly optimized for performance at large MPI task
numbers.

 Outcome: data cache misses, code is memory latency bound. Data
structure hinders vectorisation.

 In the kernel: ~ 17 iterations, 1.5M particles to be processed.

15.07.2015 Leibniz Supercomputing Centre 3

Proposed solution: SoA

15.07.2015 Leibniz Supercomputing Centre 4

 New particle data structure: defined as Structure
of Arrays (SoA).

 From the original set, only variables used in the
kernel are included in the SoA: ~ 60 bytes per
particle.

 Software gather / scatter routines.

 Gather from old to new data structure, compute
with it, scatter back to old. Example of change in
the data structure approach:

Outcome

15.07.2015 Leibniz Supercomputing Centre

 Gather+scatter overhead small when compared both
to execution time and to performance gain.

 Node-level performance improvement: +22% on the
Xeon, +41% on the Xeon Phi™. Xeon/Xeon Phi™:
0.28

 Bottleneck on memory latency is solved: Memory
latency metric (VTune) from 0.208 to 0.098.

 Data structure is now vectorisation-ready, although
vectorisation has been completely disabled at this
stage.

 Cache behaviour: improved performance by ~40%.

AoS
Stall type % cycles
L1D miss 8.49 %
L2 miss 7.99 %
LLC miss 16.27 %
TOTAL 32.75 %

SoA
Stall type % cycles
L1D miss 3.75 %
L2 miss 3.16 %
LLC miss 12.32 %
TOTAL 19.23 %

Insights and next steps

 Work on a representative Gadget3 kernel.

 Data structure and data locality: a first step towards vectorisation.

 Also part of our work:

 Shared-memory parallelisation improvements

 Other algorithmic improvements: selecting nearest particles.

 In general: optimisation is a win-win game, but the Xeon Phi™ wins more.

 Coming soon:

 Lockless parallelisation scheme.

 Port node-level code improvements back to Gadget3.

15.07.2015 Leibniz Supercomputing Centre 6

